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1 Introduction

1.1 Objectives of Course

Naturally, the course is certainly supposed to be of interest to people whose
primary motivation is to learn about the mathematical modelling and com-
putation of DNA. The focus of the course will be on the structural properties
of DNA at the length scale of a few hundred, to several hundred base pairs.
Much of our study will be centered on the motif of DNA mini-circles. Less
obviously, the course is designed also to be of interest to people who are inter-
ested in mathematical modelling generally. That is the application of DNA
is taken as a case study of the process of gaining understanding through:

e taking experimental data,

e developing a mathematical model,
e analyzing the model,

e computing with the model, and

e comparing computational predictions with further experimental data

To this second end, the course will introduce several mathematical and com-
putational techniques that are known to be of importance in many different
contexts.

1.1.1 What is the DNA Mini-Circle Problem?

A mini-circle is a relatively short, and therefore stiff, piece of DNA in which
the double helix has closed on its own tail to form a twisted circle.

The properties of such mini-circles can be measured experimentally,
and the mini-circles can even be observed directly using cryo-Electron-
Microscopy. They form a very convenient motif for studying structural
properties of DNA experimentally.

They also have lots (!) of very interesting mathematical features. Mini-
circles will be the concrete problem that we will use as a specific context in
which to introduce:

1. general approaches to modelling the structural, or tertiary, properties
of DNA and other macro-molecules.

2. Several, rather general, mathematical and computational techniques.



Most of the first semester will focus on ways of describing the minimum
energy, equilibrium shapes of mini-circles.

Toward the end of the first semester, and continuing throughout the
second semester we will consider models of the dynamics of DNA in a solvent,
which will lead us to statistical mechanics theories for polymers, Monte Carlo
simulations, and various stochastic partial differential equation models of the
Brownian and Langevin dynamics of DNA.

1.1.2 What are the Mathematical Ideas that Will Arise?

In equilibrium problems:

non-dimensionalization and scaling
the one dimensional calculus of variations

the Hamiltonian formulation of self-adjoint two-point boundary value
problems for ordinary differential equations

bifurcation theory and the roles of symmetries and integrals
the theory of the second variation and stability of equilibria
the role of isoperimetric constraints

the geometry and topology of Link, Twist and Writhe

quaternion parametrization of SO(3) (i.e. proper rotation matrices)

In Statistical Mechanics Problems:

Maxwell-Boltzmann probability distributions in phase and configura-
tion space

expectation values in polymer chain models

1.1.3 What are the Computational Ideas That will Arise?

From equilibrium models:

numerical methods for two-point boundary value problems

e collocation as a space discretization

e numerical parameter continuation



e numerical symmetry breaking

e averaging and fitting continuum constitutive relations to discrete data
From polymer chain statistical mechanics models:

e numerical implementations of Monte Carlo methods

1.1.4 What are the Structural Biology Ideas That Will Arise?

o All-atom models

Wedge-angle models

Bead models

Polymer chain models (freely jointed, freely rotating, twisted worm-
like)

1.1.5 'What are the Structural Biology Ideas That Will Not Arise?

There are many, very important and interesting questions in mathematics,
computation and statistics related to sequencing the Human Genome, i.e.
determining the list of base pairs that makes up the DNA in humans (or
other organisms). There will probably not be time to mention such issues.
We will be concentrating on models related to determination of the three
dimensional or tertiary structure of DNA.

1.2 Generalities on DNA structure
1.2.1 The Watson-Crick Model of DNA (1953)

DNA composed of four bases (or nucleotides) A, T, C, and G which pair
according to the pairing rules : A-T and C-G
DNA is composed of two complementary strands (or sequences) e.g.

strandl: C = A = T = G = T = C = T = A

| | | | | | | |
strand2: G = T = A = C = A = G = A =T

Sequence on first strand arbitrary, and then sequence on the other strand
forced by pairing rules.

Along each strand the bases are connected through a covalently bonded
(i.e. very strong) sugar-phosphate backbone. Moreover the sugar-phosphate



backbones have a direction (determined by the detailed shape of the sugars).
In most configurations of DNA including the standard one, called B-DNA,
the two backbones run anti-parallel. However parallel stranded DNA can
occur. The two backbones are linked through (relatively weak) hydrogen
bonds between the base pairs, in general 2 for A-T and 3 for G-C basepairs
respectively. Again in standard B-DNA, the three-dimensional conformation
(minimum energy shape) has the paired bases in the interior of a right-
handed ‘helix? formed by the two backbones.

The three-dimensional shape is determined by the interplay between rel-
atively weak rotational degrees of freedom in the otherwise strong backbone
bonds, and the relatively weak hydrogen bonding between base pairs. The
geometry of the base pairing and the helical backbones lead to what are
called the major and minor grooves of B-DNA. Essentially the backbones
forming the helix are not at the two ends of a diameter across the helix,
but are offset. This leads to very important biochemical phenomena—for
example there are major groove and minor groove binding proteins.

The parameters of B-form DNA are shown in the cartoon. All of these
numbers must be taken with a grain of salt: in fact salt concentration can
substantially alter them :-).

Even without changing solution conditions, these numbers must be in-
terpreted as some form of average.

DNA in solution is fluctuating at all times, so some form of time average
is involved.

The details of the shape of the helix are also believed to depend on
the base pair sequence—see detailed discussion later—so a space or sequence
average is also involved.

1.2.2 Some other forms of DNA

The relation between the sugar-phosphate backbone and each of the 4 bases
is nearly identical so that the B-form of DNA can occur for just about any
sequence of bases on either strand.

However B’-DNA occurs when one strand has several A residues in close
proximity (and the complementary strand therefore has several T residues).
In B’-DNA the two paired bases are no longer close to co-planar, but instead
have an angle between their planes of about 20 degrees (This is sometimes
called propeller twist.) B-DNA is still a right-handed helix, but the presence
of the so-called A-tracts is known to cause the centerline of the double helix
to bend. There is still controversy as to whether the bend arises at localized
kinks at the points where the B-form helix switches to the B’-form (the



junction model), or whether the whole axis of the B’-form helical segment
is curved (the wedge angle model).

In any case A-tracts are known to cause some sort of curvature, they are
known to occur in natural DNA, and they seem to be play a very important
biological role.

Short DNA molecules containing a number of phased A-tracts that pro-
vide an overall bend of 110 degrees or so in the helix axis play a crucial role
in the continuum mechanics models of mini-circles that will be described
later.

More esoteric forms of DNA

A-DNA also is right-handed, but sugars are in a different conformation
than for the B-DNA, and the two grooves are less deep.

Z-DNA has anti-parallel strands as in the B and B’ forms, but in the
Z-form a left handed heliz is formed (as well as there being many other
differences).

Z-form is difficult to achieve under physiological conditions. Sequences in
which purines (A or G) alternate with pyrimidines (T or C) along one strand
seem to enhance the formation of the Z-form, as does a loading yielding a
twist stress favoring left handed twist over right handed (see discussion of
mini-circles and plasmids below).

Parallel stranded or ps-DNA can be formed, particularly if both strands
comprise only A or T base pairs. The heliz is right handed, but the hydrogen
bonds that join the base pairs are not the standard ones and the base pair
geometry differs from the usual one.

In some circumstances (e.g. very special base pair sequences) it is also
possible to form triplex helices containing three backbones (of course two of
the backbones must be parallel!)

Quadruplex structures are also possible!

1.2.3 The Length Scales of DNA

(back to the standard B-form double helix)

Each base pair is about 20x10 % meters wide (which is the geometrical
diameter of the double helix).

Each base pair is about 3.4x1071? meters high (which is the contribution
of each base pair to the length of the double helix).

But there are approximately 10! base pairs or 3.4 meters of DNA in
each of the cells in your body! Actually the total length of DNA in each cell
is between 1 and 2 meters, all of which is not in one piece. Human DNA



comes in 22 homologous pairs + X and Y chromosomes. Longest single piece
of DNA is about 10 centimeters.

Understanding which bits of the 10'° base pairs are responsible for what
genes, is the topic of the human genome project

10 cm of DNA of width 20x10~ 1% m is still very long and skinny.

Multiply by10® then: Diameter becomes 2mm and length 10° m or 100km

A thin chalk line to Geneva and back.

The total volume of the DNA double helix is still rather small so it can
be packed in individual cells with plenty of space left over. But it must
be very organized so that it can do its job and, for example, be exactly
duplicated when the cell divides.

Much known and conjectured about the structure of this organization.
In humans the DNA is wrapped on nucleosomes (groups of small globular
proteins). Then the composite fiber so formed is wrapped and coiled into
another fiber, and so on, with the final arrangement or this hierarchy of
fiber is known as the chromosome. Perhaps the most basic function of DNA
is to code the proteins that make the cells work. There is a mapping from
triplets (or a codon) of base pairs to the amino acids that make up proteins.
This is the genetic code. Usually one gene encodes one entire protein, and a
typical length of a gene is 500 to 600 base pairs (although there is certainly
much variation in this length).

The length of scale of 500 bp or so is an important one for the mechanical
properties of DNA. The length will re-appear later.

Given that the total number of base pairs in the human genome is 10'°,
it seems that to model say a few hundred bp sequence would be a rather
modest goal. However a few hundred bp is still essentially beyond the scope
of practical MD simulations. Each base pair has around 60 atoms so a 200
bp sequence involves around 12000 atoms in the DNA itself.

However an explicit treatment of solvent makes the number of molecules
explode, and a practical current day simulation is limited to a few nano-
seconds for a 20 or 30 base pair sequence. Thus the need for better multi-
scale models is apparent.

There are a number of different hierarchies of models available above the
atomic one.

Bases or base pairs can be modelled as rigid bodies with potentials be-
tween the sub-units defined by summing atomistic potentials over the con-
stituent bodies.

Models can also be based on larger units than individual base pairs, e.g.
Monte Carlo simulations.



The DNA can be smoothed or averaged to yield a model as an elastic
line (a system with an infinite number of degrees of freedom) and then
re-discretized for simulations with the discretization chosen according to
purely numerical analysis criteria. Experimental data allow the following
conclusions to be drawn:

e DNA is big enough to be seen with various microscopy techniques.
In particular cryo-EM allows 3D shapes to be measured, which are
hopefully close to the shape in solution,

e DNA quite often occurs (or can be made into) closed loops, varying
from 150 bp (or less) mini-circles, to naturally occurring plasmids of
a thousand base pairs,

e DNA is rather stiff. For lengths of a few hundred base pair (compare
typical length of a gene fragment) DNA apparently has a well-defined
shape, in which the centerline of the double helix may be far from
straight (cf. Tortillon cryo-pictures).

1.3 The specific problem of cyclization probability

Generally accepted that unstressed DNA can have quite large natural cur-
vatures, especially when so called A-tracts (a particular base pair sequence)
are present.

Issue is how such natural curvature effects cyclization. Three different
unstressed shapes

1. straight, with no intrinsic curvature,
2. bent like a C,

3. or with the shape of a S,

will require different amounts of energy to cyclize, and phasing of the end
base-pairs obviously play a role in the process, as the double helix closure
requires the individual strands to remain anti-parallel, which prevents the
formation of a Moebius type of ribbon.

Related questions arise in DN A-protein binding which is a basic biolog-
ical mechanism that can produce sharp kinks in the DNA.

For example the 156 base pair molecule shown here has an approximately
110 degree bend in its minimum-energy stress-free uncyclized state.
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See figure 1.

The open configuration is generated as the minimum energy or un-
stressed state according to a modified Trifonov wedge angle model. Some
such discrete information coming from molecular biology is the input to the
continuum model.

And it cyclizes as shown in figure 2.

The solid lines are the computed output of the continuum model, with
the dots being the reconstructed wedge-angle equilibrium. Difference in
energies between discrete and continuous models is 0.5%.

Biochemists can experimentally measure how the equilibrium constant
between cyclized and uncyclized forms depends upon differences between
unstressed shapes for various short DNA molecules.

(Actual measurement is ligated cyclization rates of cyclized vs dimer
products)

According to various standard statistical mechanics formul the equilib-
rium constant is related to the difference in free energies between uncyclized
and cyclized states.

The particular question we addressed is whether continuum rod compu-
tations of the internal (elastic) energy can correctly duplicate the experi-
mentally measured differences for DNA molecules with differing unstressed
shapes.

See figure 3.

The first semester of the course will explain the static model used in
these computations and the limits of the model applied here.
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