9 Link, Twist, Writhe, and the Writhe frame

In this chapter, we shall consider some topological and geometrical proper-
ties associated with the double-helical structure of DNA. In particular the
two back bones of a DNA molecule provide two curves in space which do
not intersect each other. And in a mini-circle the two backbone curves are
each closed. The central theorem to be discussed in this chapter will the
Calugareanu-White-Fuller equation Lk=Tw+Wr, which is an equation that
relates the link Lk of two closed curves, to the twist Tw of a ribbon con-
structed from the two curves, and the writhe Wr of one of the curves. As we
shall see below Lk of any two closed non-intersecting curves in three-space
is always an integer-valued topological invariant (i.e. it is constant under
deformations that do not allow intersections of the two curves). In contrast
twist is a real-valued non-invariant number associated with the geometry of a
framed curve, while writhe is a real-valued non-invariant number associated
with the geometry of a single curve. Thus the Calugareanu-White-Fuller
formula states that when the two curves are closed, and an appropriate in-
terpretation of the framed curve is made, the sum of two non-invariant, real
valued quantities is an integer invariant quantity.

9.1 The Link Integral

Let us first denote by C1 = x(s) and C2 = y(o) two non-intersecting
curves, which we assume to be as smooth as necessary and in particular
twice differentiable, i.e. C2 curves in 3. Although it is not crucial for our
purposes, we remark that for the definition of Lk it is not necessary that
x(s) be a non self-intersecting curve, and similarly for y(s). However it is
crucial that z(s) not intersect y(s).

We define the Gauss Linking integral of the two curves to be:

o (y(0) — 2(s)) - (¥ (0) X @'(s))
e =g [ [ (@) — a(s)[3 do d.

This double integral is invariant under re-parameterizations of the curves,
so o and s can be any parameterizations. If & and s are arc-length pa-
rameterizations, then y’(o) and &’(s) will be unit vectors. As will be seen

later (actually in the exercise session) the choice of normalization factor %
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will make Lk integer valued in the case that both curves x(s) and y(s) are
closed.

It will also be convenient to denote the integrand in the Link double-
integral by:

(y(o) — =(s)) - (¥’ (o) X '(9))
ly(o) — =(s)®

ILk(O', 8) =

In the case where x(s) and y(s8) are closed Ik (o, 8) is a doubly periodic
function defined on a rectangle (or square). For simplicity we may then
rewrite Lk as:

1
LE(C,1,C2) = . /C /C Irk(o,s)dods
1 2

Later, we will also need the intermediate single, integrand obtained after
one integration in the Link double integral, i.e.:

(¥(0) —2() - W'(@) x&'(s)

Toe(e) = |, y(@) — 2(s)[?

Historically, the Link integral was first introduced by Gauss, who in his
duties as an astronomer studied the interlacings of two closed or infinite
curves representing the orbit of an asteroid (or a comet) and the orbit of
earth (or the orbits of any two other objects). This question is important
to understand what regions in the sky (or the celestial sphere) must be
examined to see a given asteroid from the earth over a period of time-the
possible regions that the asteroid (or other body) can appear is called the
zodiacus of that body (with respect to the earth’s celestial sphere). In the
case where the orbits of the asteroid and the earth are linked together, which
means that the asteroid trajectory intersects the interior of the ellipse in the
plane defined by the earth’s orbit, then it can be shown, using the Link
integral, that the zodiacus is the whole of the celestial sphere (and that
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some parts of the zodiacus are multiply covered). (For more details of this
history see the very nice article by Moritz Epple, “Orbits of Asteroids, a
Braid, and the First Link Invariant”, The Mathematical Intelligencer, vol.
20, number 1, 1998).

Important Remarks: As already observed,
e The Link integral Lk is invariant under reparameterization.

e The integrand has no singularity, as long as y(o’) N z(s) = {0},Vs,o.
The Link integral can have different limits, as the intersection case is
approached, so it is not possible to simply extend the definition of Lk
to cover the intersecting case.

e In contrast, self-intersection of y(o) with itself, or x(s) with itself
raises no difficulty. In fact it can be shown that one can consider
deformation of one curve, say z(s), in which self-intersections are
generated, and even the connectivity of x(s) is changed without any
singularities arising.

Theorem 1

If y(o) and x(s) are (smooth) closed curves, then:

1. Lk is an integer.

2. Lk is invariant under smooth deformations of y(o) and x(s) which
preserve the non-intersection property y(o) N z(s) = {0},Vs,o.

Note that there exist similar results for curves in which closure is replaced
by certain asymptotic conditions at infinity, including |z|, |y| — oo, as
|o|, |s] = oo. See Arnol’d and Khesin.

For general non-closed curves, both conclusions of the Theorem are false.
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Proof

The most general, and in some ways most basic, proof of Part 1 relies on
the notion of degree of a mapping. For two non-self intersecting curves, the
vector field e(o, 8) associated with the chord linking pairs of points, one on
each curve, that is defined by

y(o) —=(s)
ly(o) — =(s)]

is a smooth, singularity free, unit vector field ( provided that y(o) N z(s) =
{0}, Vs, o). Moreover for two closed curves, the vector field e(o, 8) is dou-
bly periodic. Such mappings have an integer valued degree, that is invari-
ant under topological deformations. It can further be shown that the link
expressed in its double integral form is one representation of this integer de-
gree. Unfortunately, such arguments are completely un-illuminating unless
the reader has mastered the quite considerable machinery of degree theory.
See for example Dubrovin et al. “Modern differential geometry”. Fortu-
nately, it is in fact possible to construct an elementary proof, i.e. a sequence
of elementary computations which demonstrate the result, although there is
little indication of ‘why’ the result is true. See exercise set 3 (of the Summer
semester) for an outline of this elementary proof. This elementary argument
uses the invariance properties that are the subject of part 2 of this Theorem.

e(o,s) =

Proof of the second part of Theorem 1.
We now show that the link integral can be rewritten in terms of the unit
vector field e(o, 8) as:

1
—/ / [e, es,e5] do ds
a7 Jo, Jc.

where e, and e are partial derivatives of e(o, s) with respect to o and s
(but for fixed curves y and x), and the triple bracket [a, b, ¢] denotes the
scalar triple product

[a,b,c] =a-(bXc)

Of course we have all the cyclic and anti-cyclic permutation properties of
the triple product, [a, b, c] = [b, ¢, a] etc. And in particular, [a,b,b] = 0

Substitution of the formula

B C) PR I T
y(o) —a(z)] T @) =) [|y(a) —m(s)d

€g =
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and similarly for e, into the triple scalar product yields after simplification
using the properties of the triple product, that

y(o) —z(s) (¥'(o) x '(2)) _ Ipn
ly(o) —=(s)| |y(o) —z(s)I?

We remark in passing that this identity reveals that the link integral is the
signed area on the unit sphere swept out by the vector e(o, s).

We now need to show that for all doubly-periodic unit vector fields e,
the first variation of the Link integral is identically zero. In the proof we
will integrate by parts (in s on the deg term and in o on the de, term),
using the appropriate ‘product rule’ for the derivative of a scalar product,

[e7 €Eg, ea] =

namely

[a,b,c] =[a’,b,c] + [a,b,c] + [a,b, ]

We compute the first variation of Lk when the vector field is subject to
a first order variation:

1
0Lk = —//6[6,63,60-] dsdo
4w

1
= 4—//([56, €s, eo-] + [e, 663,60-] + [e, 68,536]) ds do
™

We then integrate by parts on de, and deg, leading to boundary terms BT
and new integrals

1
0Lk = BT + — / /([Je,es,ea] — [es, de, es]
4w

—[e, de, eqs] — €0, €5, 0€] — [€, €50, 0€])ds do.

Now because of the identity eso = €45, and the skew-symmetry of the triple
product:

1
0Lk = BT + y /([(56,63,60-] — [es, de, e5] — [0, €5, 0€])ds do
T

3
=BT 4+ — / /[66, es, €q)ds do
4w
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But e(o, 8) is a unit vector field, so
e-e;—e-e, —e-de =0,

or in other words eg, e, and de are co-planar, all three being perpendicular
to the vector field e. Consequently,

[es,eq,0€] =0, Vs,o.

Accordingly, we may conclude that Lk = BT, where the boundary
terms take the explicit form

BT = U[e,ae, e,,]da'] - [/[e,es,ée]ds] =

s=0 o=0

Thus far, all the computations are valid for arbitrary curves, but now
we use the hypothesis that & and y are closed curves, and we furthermore
assume that the variations preserve closedness so that & 4+ dx and y + dy
are also periodic. This implies that:

de(o, L) = be(0,0) Vo,
and
de(0,s) = de(L,s) Vs.
Therefore we have that
BT =0 = 6Lk =0,

which is the conclusion necessary to complete the proof of the Theorem.

9.2 The Writhe Integral

We now move to consider the writhe double integral, which, contrary to link,
is a property of a single non-self-intersecting curve in space, and is defined
by integrating twice over one curve C7; = x(s) that is non self-intersecting,
ie. (s) = x(t) = s = t. We define writhe by:

1 (2(0) — 2() - @(0) X 2'(5)) ,
Wr(G) = 4m /c o (o) — z(s)[? do ds.
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We also denote the integrand of the writhe double integral by Iy ,:

_ (z(9) — z(9)) - (2'(a) x 2'(9))

Iwy (o, 8) =
lz(o) — ()
and the intermediate single-integral integrand:

(@(0) — x(s)) - (2(0) x 2'(s)) |
o

¢ lz(o) — = (s)[?
These writhe integrands are directly analogous to the formulas arising in
the link case but for two parameterizations of the same curve, rather than
parameterizations of two different curves.

The integrand Iy, is a function of s and o that satisfies Iy, (s, o) =
Iy, (o, 8). We also remark that by the hypothesis of non-self-intersection
of the curve x(s) we have that

Iwr(s) =

|z(s) — z(o)] > 0= s — 0.

Consequently, Iw, is a smooth function away from the diagonal s = o.
However, an analysis of the limiting behaviour of the integrand close to the
diagonal is necessary in order that the single and double integrals introduced
above are well-defined. In fact Iy, is also smooth at the diagonal, as is
shown in the proof of the following lemma.

Lemma
Iw,(s,8) =0

Proof: Expanding (o) in a finite Taylor series we see that
2() = o(s) + (o — 8)z'(s) + %(a’ — 5)23" (9.171)
z(o) = z(s) + (o — s)z'(s) + %(0' — 8)%z"(s) + %(0' — 5)32/(9.172)
and
#(0) = @/(s) + (o — $)a"(5) + 5 (o — 82" (9.173)

where z’ denotes the derivative of the vector function & with respect to s,

and £”, &'’ and Z'” denote the vectors of the finite truncation terms,

ry (£1) 7’ (1) z7’ (x1)
= (&) |, & — !t (1h2) , " = a2 (xz2)
T3 (€3) z3’ (13) zy’ (x3)
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with |&; — s| < |o — 3|, |[¢¥i — 8| < |oc — 8] and |x; — 8] < |o — s| for all
i=1,2,3.

Now we can expand the integrand Iy, (using (9.172) and (9.173) in the
numerator and (9.171) in the denominater) as:

A-((#(9) + (o = 9)2"(s) + J(o = 9)°8") X 2'(s)
o sl |a/(s) + 5 (o — )" ?

>y

~~

where A is a place holder for
1 1
A= (oc—3s)x'(s)+ 5(0’ — )2z (s) + g(a' — )3z,

In simplifying the numerator there is substantial cancellation, and the lowest
power of (o0 — 8) to survive is of fourth order, for example a term like

<(o = )18 - (a(s) x ' (s)).

On the other hand, the braced term in the denominator is positive (assuming
s is a smooth parameterization so that z’ is a non-zero vector, for example
a unit vector if s is an arc-length parameterization so that the braced term
is greater than 1/2 for |0 — s| sufficiently small). Then the denominator
behaves as (o — s)3, while the numerator behaves as (o — s)%. Therefore
Iw, — 0 as o — s.

Some properties and non-properties of Writhe:
e Wr is not invariant under general smooth deformations of @,

e Wr is invariant under translations, rotations, re-parameterizations and
dilations of x,

e Wr changes sign when @ is reflected in a plane. Consequently, planar
non-intersecting curves have zero writhe. In fact, the writhe integrand
vanishes point-wise in s and o when the curve is planar.

e Wr changes sign when « is inverted in a sphere. This property gener-
alizes reflections in a plane, although it is much less obvious. Conse-
quently curves lying on a sphere must also have zero writhe, which is a
property that can be shown straightforwardly using the Calugareanu-
Fuller White formula (see exercises). The writhe integrand does not
vanish point-wise for such spherical curves.
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e Wr is not necessarily an integer, even for closed curves.
e Wr is not, and cannot be, well-defined for self-intersecting curves.

e All the cancellations in the Taylor expansion of the integrand Iy, in
the limit s — o that a numerical evaluation of writhe on some dis-
cretization of a curve requires some special care close to the diagonal.

9.3 The Twist of a Ribbon

By a ribbon we mean a curve x(s) along with a (usually unit) normal vector
field d; (s). Recall that when combined with the unit tangent vector ds(s)
field, the externally defined normal field d; (s) induces a proper orthonormal
adapted framing of the curve x(s). Moreover, given the curve z(s), we have
seen that any orthonormal adapted framing is equivalent to an initial frame,
at s = 0 say, plus ug(s) a scalar function of the arc-length parameter s
defining the (local) twist of the orthonormal framing. The natural way of
defining the twist, or total twist, T'w of a ribbon is then as the single integral:

1 L
Tw = — / ug(s)ds,
27 Jo

i.e. the total twist is the integral of the local twist density ug(s) normalized
by the factor 2mr. (So that for a planar curve, which has writhe zero, total
twist 1 corresponds to a complete turn of the normal field about the curve.
Similar arguments about non-planar curves with non-zero writhe should be
treated with caution.)

Alternatively, a ribbon can be regarded as being defined by two space
curves z(s) and y(s) which make up its two edges. Notice that it must be
the same parameter as argument for both curves, so that there is a well-
defined chord vector that sweeps out the surface of the ribbon. We will
actually reserve the term ribbon for the case where the second curve y can
be constructed from x and a local twist ug via the relations:

y(s) = z(s) + eda(s)

which imply after differentiation (and assuming that the parameter s rep-
resents arc-length for the curve z(s))

y'(s) = 2'(s) + edy(s) = ds(s) + e(u(s) X di(s))

Note that s is assumed to be arclength for , but will not in general be
arclength for y.

110



9.4 The Calugareanu-White-Fuller Theorem

The Calugareanu-White-Fuller formula applies in the case that x(s) is a
smoothly closed curve in 83, with dy(s) a smoothly closed normal vector
field. We therefore have a ribbon as defined in the previous subsection.
Moreover the ribbon is completely closed in the sense that both the base
curve z(s) and the normal field are periodic. For such completely closed
ribbons, which do not self-intersect themselves (which is a reasonable hy-
pothesis for e sufficiently small), the formula states that

Lk =Tw+ Wr

where Lk is the link of the two edge curves (s) and y(8) of the ribbon,
Tw is the total twist of the ribbon frame, and Wr is the writhe of the base
curve z(s).

We will outline an elementary proof of this formula. We need to start
with a Lemma, essentially due to Calugareanu. Let

a(s’ 5)

denote the single link integrand for the specific two curves defining the edges
of the ribbon, i.e. (o) and y(s) = x(s)+ed1(s) The Calugareanu Lemma
states that:

lim Tzx(s,€) = 2us(s) + Ip(s)
e—0

Here I/L\;c and I/W\r are the single-integral integrands introduced earlier by
carrying out one of the integrations in respectively the link and writhe double
integrals. It is of some interest to remark that this Lemma does not require
x or dj to be closed. The limit can be considered as the non-uniform limit
€ — 0 of the link integral when the ribbon shrinks to a single curve. The
proof of this lemma, is the essential core of the proof of the CFW formula,
and therefore we will give a fragrance of the proof of the lemma.
We have to evaluate:

[ @) o) @) (@) x () + i)
0 (o) — 2(s) — edi(s)[?

An essential part of the estimation will involve the fact that for any
smooth curve x(8), s being the arclength, 3 K such that |z(s) — z(o)| >
K|s — o| (K is called the distor constant), therefore we have:

1 1
<
lz(s) —z(o)] ~ K|s— o]

do

lim
e—0
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The proof requires different estimates close to, and away from the diag-
onal. Accordingly we break the integral into two parts for o close to s and

for o far from s:
/C /C’\(s—sé,s—l-sé) (s—s%,s—l-s%)

We now develop the numerator of the integrand in powers of &:

e : (z(0) — z(s)) - (¢'(0) X 2'(s))

el: —di(s) - (2'(0) X 2(5)) + (z(0) — z(s)) - (&'(0) X (—u2(s) - &'(s) + us(s) - d2(s)))

etc...

details to be included later ..........

The above lemma can be re-written in a formal way involving the inte-
grands of the double integrals

Ik(s,e,0) = 2us(s)d(s — o) + Iw,(s,0)

where § stands for a Dirac delta function, which recasts the Twist integral
as a double integral over s and o.

With the help of the above Lemma, we are in good shape to derive the
CFW formula after a second integration:

Proof of the Calugareanu-White-Fuller formula.
After integration of the above identity, we conclude that

;i_r)r(l) Lk(z(o),y(s)) =Tw+ Wr

But for a closed ribbon we know that the LHS is independent of &, which
is just the topological invariance of Lk for two closed curves. Thus we have
the identity

Lk(z(o),y(s)) = Tw + Wr

for all e, which is exactly the CFW formula.

Remark: The only role played by complete closure of the ribbon is that it
guarantees independence of the LHS on . Thus it is interesting to consider
whether there are other circumstances, less restrictive than complete closure,
in which the LHS can be shown to be either independent of, or have a
simple dependence on e. If so, a generalization of the CWF formula would
arise. See the discussion of the writhe frame later in these notes for another
generalization.
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9.4.1 The self-linking of a closed curve

We now turn to consideration of various interesting, specific choices for the
normal field dq(s). First let us take

di(s) = n(s) = z”(s)/]=" ()],

i.e. n(s) is the principal normal of & (which we assume to be smooth and well
defined everywhere, i.e. there are no points of vanishing curvature |z”'(s)| =
0).

Because the geometrical normal has a local, intrinsic, definition in terms
of derivatives of the curve &, whenever x is smoothly closed, then n will be
closed too. Thus we may apply the CFW formula. For the Frenet frame
ug(8) = 7(8), i.e. the twist of the frame is just the geometric torsion of the
curve . Then the CFW formula is used to define the Self-Linking of the
curve T

L
SLk(z(c)) = %/0 7(s)ds + Wr(z)

As SLE is just the particular link that arises when the ribbon is gen-
erated by the Frenet frame, it is automatically an integer valued homotopy
invariant, but only among deformations that avoid points of vanishing cur-
vature, i.e. inflection points. For more general deformations one has to
somehow deal with the possibility that the principal normal framing could
change discontinuously. We remark that for a smoothly closed curve there
is no reason to believe that in general % [ 7(s)ds or Wr is an integer, but
if one is an integer, then by the CFW formula, so is the other.

9.4.2 The natural frame

The natural frame, whose definition is that ug(s) = 0, may or may not be
closed for a general smoothly close curve. However, as we have seen, up to a
rotation of the initial choice of normal, the natural frame is uniquely defined
for any smooth curve, and there are no difficulties analogous to thise arising
at inflection points for the Frenet frame. Is the CFW formula interesting for
the natural frame? It does not immediately apply because the natural frame
may not be closed. However it does lead to some interesting conclusions after
some preliminary calculations.

Recall that for a given curve z if {d;} is an adapted framing correspond-
ing to a twist ug(s), and {d;} is another adapted framing corresponding
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to a twist vg(s), then we can define the scalar angle function between the
frames by the ODE

#'(s) = us — vs.

In other words

L
Pl = [ (us — va)a.

Now, suppose that the curve « is smoothly closed, and that the adapted
framing corresponding to the twist ug(s) is closed. When is the second
adapted framing also closed? Purely from the geometry inherent to the
definition of the angle ¢, the second frame also closes when

2N7 = ¢[;Z;

for some integer IN. Using the previous identity this condition is equivalent
to

L
2Nr = / (us — v3)ds.
0

Now the Frenet frame of any smoothly closed curve is known to be closed,
so we can apply the above argument to the Frenet frame (which has twist
ug = T the geometrical torsion) to conclude that the natural frame (which
has twist vg = 0) is closed iff

L
/ 7ds = 2w N.
0

Thus we see that a smoothly closed curve has a closed natural framing iff
the integral of torsion is an integer multiple of 27r. Because the self link
SLk is always an integer, we also see from the CFW formula, that Wr of a
smoothly closed curve is an integer iff the natural framing is closed.

9.5 Some interesting implications for DNA

We now consider some implications of the above arguments that are perti-
nent to modelling DNA.
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e We have already seen that when two smoothly closed curves & and y
are deformed, the (integer) Link Lk(x, y) is constant unless the curves
x and y cross each other. In particular if & crosses x, or y crosses y
the link remains constant. However when @ crosses ¥ it can be shown,
for example by the methods used in one of the exercise sessions, that
Lk(z,y) jumps by £1 (in certain atypical cases, the jump could be a
different integer, but such cases are all pathological). When a ribbon
passes through itself, there are two intersections of the two edge curves,
and consequently it can be shown that the link changes by £2

e On ribbon or strand passages, where Lk is jumping by &2, the total
twist Tw is a continuous function. Therefore due to the Calugareanu-
White-Fuller formula, the writhe has to change discontinuously by
42 in exactly the same way as the Lk of the ribbon. But writhe is a
property of a single curve &, thus we see (either by the above argument
or by a direct analysis) that when a curve is deformed in such a way
that it passes through itself, its writhe jumps by 2.

e For the elastic rod models that we have considered previously, the
elastic energy has the following form:

L 3 1
E = / > oKi(ui —w)?
0 =1 2

For isotropic rods, where u; = us = 0 and K; = Ko, we can
simplify this energy to

o | 5 1 _ .\
E = / —Kln + —K3(’LL3 — U3)
0o 2 2

where we have used the fact that the geometric curvature k satisfies
the identity k2 = (u? + u32).
For this isotropic elastic energy we know that there is the integral
mg = K3(uz — u3) = const. Assuming further that K3 and ug
are both independent of s, we may then conclude that ug is constant
at an equilibrium, because

ms

u3:u3+F
3

Remembering the Calugareanu-White-Fuller formula

1 L
Lk = — / u3ds + W’l",
27 0
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if we further restrict attention to isotropic DNA mini-circles that are
completely closed, and because we know ug to be a constant, we could
then write

_ 2m(Lk — Wr)

- L

usg

where the RHS depends only on an integer (the link) and the rod cen-
terline, through the non-local double integral formula for the writhe.
We may therfore re-express the Energy solely as a functional dependent
on a smoothly closed centreline , with a given constraint imposed by
a fixed integer Lk:

L 2

B= [ K@) ds+ Kl (2”(”“ ~Wr@) 173) ,
)y 2 2 L

where it should be re-iterated that the writhe is a double integral, so

that the second term is a quadratic function of a non-local energy.

Despite its many restrictions, this formulation of an elastic rod model

of DNA is widely used (and abused) in many numerical simulations.

9.5.1 The Writhe Frame

Finally we turn to a consideration of what can be said about the Lk =
Tw + Wr formula in the case of a non-closed ribbon? In particular we will
show that Tw + W has a simple interpretation for a ribbon in which the
base curve is smoothly closed, but the adapted framing is open.

For any curve x, define a new adapted framing with the twist

va(s) = — 5 Twr(a(5)).

This twist is a function of s that is defined non-locally through the single
writhe integrand I/v;n Nevertheless, it uniquely defines (up to the usual
choice of initial condition) an adapted framing that we will call the Writhe
frame.

Now suppose that @ is smoothly closed, and that ug(s) is any twist that
defines a closed ribbon on . We may therefore apply the CFW formula.
But by our definition of vg(s) the CFW formula takes the form

1 L
Lk =Tw+ Wr = —/ (ug — vg)ds.
2 0
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And we also know that for any two adapted framings defined by twists ug(s)
and v3(s), the angle p(s) between their normal vectors satisfies

L
PiZs = [ (us = va)ds.
0

By assumption ug(s) is a twist that defines a closed ribbon on &, so Lk of
that ribbon is an integer. Consequently, by the above formulas we see that
<p|§zoL is an integer multiple of 27r. In other words, the writhe frame is also
closed.

Once we know that the writhe frame is closed for any smoothly closed
curve x, it makes sense to consider the link Lk for the writhe framing of the
curve. In particular, we may take ug(s) = v3(s) and still apply the CFW
formula to conclude that the link of the writhe framing is zero. Therefore,
the writhe frame has the appealing interpretation of being an intrinsically
defined, closed, zero link framing of any smoothly closed curve.

Knowing that the writhe framing of any smoothly closed curve is closed,
leads to another application as follows. Suppose now that ug(s) is a twist
defining an arbitrary adapted framing dy(s) of a given smoothly closed
curve z. And denote the writhe framing by d;(s). Using the freedom for
choosing initial conditions, we may assume without loss of generality that

d1(0) = d1(0),

i.e. the angle between the frame defined by ug(s) and the writhe frame
vanishes initially, i.e. ¢(0) = 0. Then

/ (us — vs) = (L)
0

which is the angle between the two frames at s = L, or more precisely
between d; and dy at s=L. But the writhe frame is known to be closed so
that d1(0) = di1(L) = d1(0) by construction, and therefore (L) is th
angle between dy (L) and dq (0), which is the angle by which the frame {d;}
associated with ug(s) fails to be closed.

The above arguments can be re-phrased as a version of the CFW formula
for the case of non-closed ribbons with smoothly closed base curves: The
quantity

2n(Tw + Wr) mod 2w

is the angle of discontinuity by which the ribbon fails to close. The ribbon
closes precisely when (Tw + W) is an integer, in which case the CFW
formula states that that integer is the link of the ribbon.
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Open Question 1: Twist and writhe and the double integral formula
for Lk are all well-defined quantities for adapted framings of non-closed
curves. Is there an interesting formula that relates the three quantities
for a) non-closed framings of smoothly closed curves, b) framings of non-
smoothly closed curves. Notice that the arguments immediately above give
an appealing interpretation of the sum (Tw + W), but do not provide a
connection to the double integral representation of Lk unless the ribbon is
closed.

Open Question 2: For some framings of a given smooth curve & that are
defined by specifying the twist, there are explicit solutions for the framing
in terms of the curve x and its derivatives. For instance for the Serret-
Frenet framing, where v3z(s) = 7(s) with the geometrical torsion 7 being
an expression involving third derivatives of the curve &, one normal framing
is d1(8) = n(s) = z"(s)/|z"”(s)|. Is there also an explicit form for the
writhe frame? Notice that because the writhe frame is defined purely in
terms of a non-local function of x(s) and its derivatives, and because the
writhe frame is always closed for any smoothly closed curve , it is plausible
that an expression for a writhe normal does exist in terms of some non-local
integral expression of x(s) and its derivatives. Such an expression would
be one possible way to better understand the interplay between bending
and twisting of rods whose centrelines are not closed. It could also give an
alternate, and simpler proof of the CFW formula.
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