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1 Introduction

This is an informal set of notes on the mechanics of rigid bodies. The primary focus is on the
representation of the orientation of a rigid body by Euler parameters. Such a representation
also pertains to the director theory of rod mechanics. I also summarize some closely related
mathematics, particularly the algebra and geometry of the quaternions.

2 Representations of Rotations

A parametrization of the directors {dy} is equivalent to selecting a representation for the
group of orthogonal transformations SO(3). In fact, we will always regard an element A €
SO(3) as representing the components of the directors {d;} with respect to the fixed frame
{ex}, so that in matrix form A = (A;;), where A;; = d, - ;. That is, the vector dj forms
the k—th row of the matrix A.

In mechanics there are several common choices for such a representation. (Cf. e.g. [5].)
Euler angles are often used because this representation uses the the minimum number of
parameters, three. There are two significant drawbacks in using Euler angles. First, due to
the topology of SO(3) a set of three parameters cannot provide a global representation. In
the case of Euler angles there is a direction in space at which the representation becomes
singular. This singularity makes the study of dynamical systems a delicate matter, since
the particular set of Euler angles must then be selected to avoid the singularity, or different
charts must be used as the dynamics evolve. A second drawback in the use of Euler angles
is the appearance of trigonometric functions, which can be computationally expensive.

In these notes we instead focus upon Euler parameters, which provide a four-dimensional,
global, two-to-one parametrization of SO(3). In addition, only polynomial and rational
functions arise in this representation. The difficulty with the Euler parameter representation
is that the squares of the parameters must sum to one, which imposes a constraint upon
the dynamics. An elementary discussion of Euler parameters can be found in [5]. Further
discussions of Euler parameters as they apply to the motion of rigid spacecraft can also be
found in [10] and [25]. The kinematics of Euler parameters are summarized in section 2.1.
For completeness, we also discuss a representation by Euler angles in section 2.2.

2.1 FEuler Parameters

A set of Euler parameters is a quadruple of real numbers q = (g1, g2, g3,94)T that satisfies
the identity
qa-q=q’+¢"+¢ +q¢=1 (2.1.1)



The set of all quadruples satisfying (2.1.1) forms the unit sphere S* in R%. A set of Euler
parameters q is often called a unit quaternion, in connection with the algebra of quaternions
[21]. In fact one reason that Euler parameters are so useful for the representation of SO(3)
is because the composition of two rotations may be expressed an elegant manner which
is closely related to the multiplication of quaternions. Euler parameters are also closely
associated with the Cayley-Klein parameters used to represent SU(2) [14]. The relationship
with Cayley-Klein parameters is discussed later in these notes.

To obtain a representation of the directors in terms of Euler parameters, first recall that
by Euler’s Theorem each element of A € SO(3) is equivalent to a rotation through an angle
® about an axis determined by a unit vector k. Specifically, A is given in terms of k = k;e;
and ¢ by



A = (cos®)l+ (1 —cosP)k ®k —sin P[kx]|
cd + k%(l — CCD) kle(l - C(D) + k33<1> klkg(l — C(D) — kQSCD
= klkg(]. — C(I)) — ]{338(1) cd + k%(]. — C(P) k2k3(1 — C(b) + ]{318(1) ,
]{31]{33(1 - C(I)) + kQS(D kgkg(]. — C(I)) - ]{318(1) cd + k%(]_ — Cq))
(2.1.2)

where ¢® is cos @, s® is sin @, 1 is the identity matrix, ® is the outer product!, and [kx] is
the skew matrix

0 —ks ks
kx]=| &k 0 —k (2.1.3)
—ky kO

corresponding to the cross product with the vector k.
The Euler parameters (g1, g2, g3, g4) are defined in terms of k and & by

¢; = k;sin(®/2), for j=1,2,3 (2.1.4)

and
qs = cos(®/2). (2.1.5)

Euler parameters have the unusual feature that if q corresponds to the pair (k, ®), then
—q corresponds to the pair (k, ® + 27) which represents a coterminal rotation. Thus there
is a two-to-one correspondence between Euler parameters and rotations. Exploiting the
identities cos ® = 2cos?(®/2) — 1 and sin ® = 2sin(®/2) cos(®/2) together with equations
(2.1.1), (2.1.5), (2.1.4) and (2.1.2) one can represent the rotation in terms of q as

; G-G-G+¢  2(qe+ ) 2(q1q3 — G2q4)
AlqgB) = |af” 201 —301) —E+B-G+4G  2(q1 + ©0) :
2(q193 + ¢2q4) 20— + @233) —G—-G+G+ 4
(2.1.6)

where |q| = /q-q.

The factor of |q|’~2 we have introduced in equation (2.1.6) is not generally used in
this representation of the rotation matrix, but indicates that there is actually a family of
representations of a rotation in terms of a quaternion q, all of which are equal if |q| =
1. The parameter 3 is called the degree of homogeneity of the rotation matrix, since the
multiplication of the quaternion q by a scalar e causes the matrix to scale as A(eq; ) =
e’ A(q; 3). Most commonly, one sets 3 = 2 so that the factor 1/|q|*># is identically one.
Alternatively, if we choose § = 0, the matrix A(q;0) is explicitly orthogonal for all q # 0,
from which follows the identity

A(q; 8) = [a|’A(q; 0) . (2.1.7)

As we have noted, the choice of § is of no consequence if the normality condition |q| = 1
is satisfied. However, during computer simulations of rotational dynamics the normality

'If vectors a and b are thought of as column vectors, possibly of different dimensions, then their outer
product a ® b is the given by the matrix ab”. Put differently, if vector c is of the same dimension as b,
then (a®@b)c=a(b-c).



condition is often violated due to numerical errors (although columns and rows of the matrix
A(q; 3) are always orthogonal). We therefore seek to determine the effects when |q| # 1 by
considering various choices of 4. We will however assume that q # 0, so that the matrix
A(q; ) remains well-defined.

We use the matrix A(q; ) to denote the transformation from the reference frame O =
{e1, e, e3} to the director frame D = {d;(q; 3),d2(q; §),ds(q; 5)}. Thus

G -¢-G+aq
di(q;8) = |a? 2(q192 + q3q4) : (2.1.8)
2(611613 - (I2Q4)
2(Q1Q2 - l13Q4)
do(q; 8) = laf’?| - G+B-G+4 |, (2.1.9)
2(q2q3 + q1q4)
2(q1q3 + q2q4)
ds(a; 8) = lal’? | 2(gegs — q1aa) . (2.1.10)
—¢ -G+ G +a;

For any 3 and for any q # 1, the set of directors {d;(q; )} is orthogonal, but the directors
are orthonormal only if |q| =1 or # =0 (or both). Instead we have the identities

d;(a; ) = |al’d;(q; 0) (2.1.11)

analogous to (2.1.7), and
|d;(q; 8)| = lal” - (2.1.12)
We now consider the problem of expressing the angular velocities in the body frame {w;}

as a function of the Euler parameters. First, because the directors {df } are not normalized
for B # 0, the kinematic relation '
dk =w X dk " (2113)

does not hold in general, and so the definition of angular velocity must be generalized slightly.
We believe that it is must reasonable to represent a vector in the body frame with respect
to the explicitly orthonormal basis {d;(q;0)}, so that the angular velocity is written as

W = wq dl(q, 0) —+ wo dz(q, 0) —+ ws d3(q, O) (2114)
We can use the angular velocity (2.1.14) to write the time derivative of ds(q; #) as

ds(q;8) = [widi(q;0) +woda(q;0) +wsda(g; 0) ] x da(q; 5) (2.1.15)
= —widy(q; B) + wadi(q; B) ,

where we have used the identity
3
di(q; 0) x dj(a; 8) = Y eiedi(a; 8) - (2.1.16)
k=1

Taking the dot product of dy(q; #) with equation (2.1.16), we can express express w; as

da(q; 8) - ds(q; 8)  da(q; B)

.\ ¢
\q|?# - q/28 -Ds(a; 8)" @ (2.1.17)

w1 = —



where the 4-by-3 matrix D3(q; ) is defined by

Dy(q; 8) = <L’“§2; ﬂ)>T . (2.1.18)
Equation (2.1.17) can be rewritten as
Wi = équ -q, (2.1.19)
where the 4-vector B1q is is defined to be
Bia=— [a ¥ Dy(a: ) do(a; ) - (21.20)
Using equation (2.1.10), one can write D3(q; ) explicitly as
93 —q4 —q1
Da(a; ) =20l | I 0 T |+ (0= p@ds(ah) (2.1.21)
92 —q1 q4

It follows from equation (2.1.21) that the vector B;q has an extremely simple form, namely

Bia=( ¢, ¢ ,—¢ —q) . (2.1.22)
We remark that time differentiation of the identity
di(q; 8) - dj(q; B) = |q|2ﬂ5ij (2.1.23)

with 4 = 2 and j = 3 implies
ds(q; B) - do(q; B) = —da(q; B) - ds(q; B) | (2.1.24)

which in turn implies that the vector B;q can be expressed alternatively as

Bia= [a” % Da(a: 6) dia: 5) (21.25)

Also, because the components of the vector B;q depend linearly upon q, we can interpret
Biq as the product of a 4-by-4 matrix B; with q. More will be said about the matrix B;
below.

Using computations analogous to those above, one can express the other components of
angular velocity as

2 .
for 7 = 2 and 3, where

Bia = 5 laP ¥ Dy(: ) di(a; ) (21.27)

_ _% lal*~2° D (q; ) da(g; )

= (_q3a q4, q1, —CI2)T )



and

Bia = 5 la*% Dala; ) dsla; ) (21.28)

1
= -5 la** Ds(a; §) da(a; B)
= ( 492, —q1, (I4,—q3)T-

The vectors B;q are all linear in q. Moreover, it is readily shown that the set of vectors
{q, B1q, B2q, B3q} is mutually orthogonal, and forms an orthonormal basis for R* if |q| = 1.

One can use the basis of vectors {q, B1q, B2q, B3q} in R* together with the basis {d;}
in R? to rewrite the matrices Dy, in a geometrically more meaningful way. We first note that
because |dy(q; 3)| = |q|® implies
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29q (@ B)|? = Di(q; B)dk(a; 8) = Bla/**q - (2.1.29)

Then, because {|q| ?di(q;3)} forms an orthonormal basis for R?, we can use equations
(2.1.20), (2.1.28) and (2.1.29) to rewrite D3(q; 3) as

Ds(q; 8) = & Boq® di(q; 3) — é B.q® dy(q; ) + %q ® d3(q; B) - (2.1.30)

Similarly, one can show that

2 2 3
Di(q; 8) = PIE B3q ® da(q; 3) — oF B.q ® ds(q; 8) + q2¢ ds(q; ),  (2.1.31)

2 2 3
D;(q; 5) = TP B1q ® ds(q; 8) - P B3q ® di(q; 8) + qF4® ds(q; 8) . (2.1.32)

which can be summarized as
3 2 /6
Di(a) = ) q? €ijxBja®d; + @q ® ds(q; 3) . (2.1.33)
ij=1

Equation (2.1.33) yields a geometric interpretation of the vector B;q: for small €, a change
in q by eBxq produces a rotation about the d; axis through an angle 2¢. In particular we
have the identity

Dy(q;8)"Bra =0, (2.1.34)
which reflects the fact that dj itself is unchanged by a rotation about dj. We also observe

from equation (2.1.33) that
Di(q; 8)"a = Bdi(a; B) (2.1.35)

a consequence of Euler’s theorem and the fact that d; is homogeneous with degree § with
respect to q.

Equations (2.1.26) and (2.1.31) —(2.1.30) seem to indicate that the set of vectors
{2q/|a?,2B;q/|q|*}, rather than {q, B;q}, is the more natural basis for the space tangent

6



to S®. In this connection, we note that the dual basis to {2q/|q[?, 2B;q/|q[*} is {349, B;a},
which arises in a Hamiltonian formulation of rigid body dynamics using Euler parameters.

Using equation (2.1.26), we can express components of the angular velocity in the rotating
frame collectively as

w= 2 B(q)d (2.1.36)
af?
where
3 q4 93 —q2 —q1
B(q) = Z €; &® qu = —(q3 q4 Q1 —Qq2 . (2.1.37)
=1 P —q 94 —q3

This is the relationship between angular velocity and Euler parameters that one commonly
sees in the literature. I am not aware of any prior work in the kinematics of rods or of
rigid bodies where the vectors B;q have been utilized explicitly. However, I believe the
basis vectors B;q are in general more useful for a geometric comprehension and for detailed
calculations.

Using calculation analogous to those as above, we can express the components of angular
velocity with respect the fized frame as

2
w-ej=7—7-q-F;q, (2.1.38)
q
where
qu = ( qd4, —Q3, g2, _QI)T 3 (2139)
Foq = ( q3, 44, —q1, —Q2)T ) (2-1-40)
F3q = (—CZ2; q1, Q4a_Q3)T . (2141)

This equation are often written collectively as

w= - F(Q4, (2.1.42)
af?
where
3 g4  —Qqs3 92 —q1
F(q)=) e;®B;q= B G - —¢ |- (2.1.43)
j=1 —q2 q Qs —q3

By the definition of the transformation matrix A, the components of angular momentum
with respect the fixed frame and the rotating frame are given by

3 3
w-e; = Z(“’ -d;)(d; - e)) = ZAij(w -d;) (2.1.44)
i=1 i=1
or
w=A"T(qu. (2.1.45)
It therefore follows that
F(q) = A(q)'B(q) (2.1.46)

7



It is a remarkable property of Euler parameters that the matrices B(q) and F(q) both take
such a simple form. We now note a few properties of the matrices B and F which will be
used later. Observe first that the 4-by-4 matrix given by

R(q) = — (B(q)> (2.1.47)

= H q
is orthogonal. It then follows from the identity R(q)R(q)? = 1 that
B(q)B"(q) = |q’1, (2.1.48)
and that the 3-by-4 matrix B(q) has rank 3, with its null space spanned by q:
B(q)qg=0. (2.1.49)

Similarly the identity R(q)"R(q) = 1 implies

B’ (q)B(q) = |q|’TI(q), (2.1.50)
where 454
(o) =1- 5 (2.1.51)

is the projection onto the subspace orthogonal to q. Notice that equations (2.1.37), (2.1.43)
and (2.1.48) imply
1

al?
Equation (2.1.52) shows that the matrices B(q) and F(q) provide a factorization of the
rotation matrix A(q), analogous to the factorization of a rotation matrix in terms of three
elementary rotations using Euler angles. Apparently Euler first introduced Euler parameters
precisely for the purpose of producing such a factorization. (Cf. [9], [21].) Refer to the end
of section 4 for further remarks on this subject.

The matrices which determine the vectors B;q are

B(q)F(a)" = A(q). (2.1.52)

0 0 0 1
0 0 1 0

B, = 0 —1 0 0 (2.1.53)
-1 0 0 0
0 0 -1 0
0 0 0 1

B, = 1 0 0 E (2.1.54)
0 -1 0 0

and

0 1 0 0
-1 0 0 0

B; = 0 0 0 e (2.1.55)
0 0 -1 0



The skew matrices By, satisfy the commutation relations

(By)> = -1 fork=1,23, (2.1.56)
B1B2 == —B3, (2157)
B2B3 = —Bl, (2 158)
B3B1 = _B2, (2 159)
which can be summarized as
3
BjBk = _(5jk1 - ZeijkBia (2160)
i=1

where 4, is the Kronecker delta, and ¢;;;, is the permutation tensor. Thus group of matrices
{#£1, £B;} is isomorphic to the quaternion group. (Cf. [11].) The skewness of the matrices
B; together with the property (2.1.56) imply that each exponential B; = exp(3€eB;) is an
orthogonal transformation in R* given by

B; = exp(3¢B;) = cos(3¢)1 + sin(3¢)B;. (2.1.61)

In fact each transformation B; on the Euler parameters corresponds to a rotation B]- in R?
through an angle € about the axis d;. In particular,

d; (Bsq) =  cos(e)di(q) + sin(e) d2(a),
d; (Bsq) = —sin(e)di(q) + cos(e) da(q),
d; (Bsq) =  ds(q). (2.1.62)

The transformation Bz describes the rotational symmetry about the ds axis in the dynamics
of an isotropic rod.
If q(t) is a unit quaternion for all time ¢, then the time differentiation of the norm
condition (2.1.1) implies
q-9q=0. (2.1.63)

Equation (2.1.26) for the angular velocity can be inverted using the orthogonality condition
(2.1.63) to obtain

3
a=>) 3w;B;q (2.1.64)
j=1

For given {w,(t)}, equation (2.1.64) is a first-order linear differential equation for q which is
extremely convenient in spacecraft dynamics. We can use (2.1.64) to obtain a relationship
between a given set of Euler angles describing a rotation and the equivalent set of Euler
parameters. For example, an orientation given by the 3 —2 — 3 Euler angle sequence (¢, 8, 1)
can be reached through a sequence of three rotations

(wlaw2aw3) = (Oa 0, ¢) fOI‘ le [0’ 1)5
(w1, wa,w3) = (0,6,0) for t € [1,2),
(wl,wQ, wg) = (0, 0, T/J) for t € [2, 3) (2165)

9



Because the differential equation (2.1.64) is linear and autonomous on each of these intervals,
the solution at the completion of the rotation sequence is simply

q = exp(%ng) exp(%ﬁBQ) exp(%¢B3)

_ o o O

= [c(3¥)1+ s(39)Bs| [c(30)1 + s(30)Bs] [c(36)1 + 5(5¢)Bs] . (2.1.66)

_— o O O

This calculation appears (somewhat mysteriously) in Junkins and Turner [12], who in turn
credit Harold Morton. The results table of Euler parameters for each of the twelve Euler
angle sequences also appears in [12].

Similarly the vectors F;q are given by the matrices

0 0 0 1
0 0 —1 0
F, = 0 1 0 K (2.1.67)
-1 0 0 0
0 0 1 0
0 0 0 1
F, = 1 0 0 E (2.1.68)
0 —1 0 0
and
0 —1 0 0
1 0 0 0
F; = 0 0 0 1 (2.1.69)
0 0 -1 0
The skew matrices F}, satisfy the commutation relations
(F,)? = -1 fork=1,2,3, (2.1.70)
F1F2 - Fg, (2 171)
F2F3 = Fl, (2172)
F3F1 = FQ, (2 173)
which can be summarized as
3
Fij = — jkl + Z eiijz’- (2174)
i=1

The group of matrices {£1, £F}} is also isomorphic to the quaternion group. The matrices
By are also closely related to the Pauli spin matrices. (Cf. e.g. [5].) In addition, while we

10



are not aware of their prior application in rod dynamics, Seywald et al. [20] have exploited
the matrices Fj and their commutation relations (2.1.74) to analyze the optimal control
problem of reorienting a rigid spacecraft using the least amount of fuel. Each orthogonal
transformation F; = exp(5€F;) corresponds to a rotation F; in R about the axis e; through
an angle €. These transformations also have the property that

(F;)" By F,; =By (2.1.75)

This invariance of the By matrices is related to the fact that the angular velocities w; relative
to the {dy} basis are unchanged by a rigid rotation of the body.

Using the matrices By and Fj one can rewrite equation (2.1.52) in terms of the entries
of matrix A as

d]’ e = (dj)k = |q\ﬂ_2q . Djkq y (2176)
where the 4-by-4 matrix D, is given by
D;. = (B;)" Fr = —B; Fy . (2.1.77)

One can show that each matrix Dj; is symmetric, which together with the skew-symmetry
of the matrices B, and Fj, implies

D, = (Fx)" B; = —-F;B; . (2.1.78)
1 0 0 0
0 -1 0 0

D, = 0o o0 -1 o |- (2.1.79)
0 0 0 1
0 1 0 0
1 0 0 0

Dy, = o o o 1| (2.1.80)
0 0 1 0
0 0 1 0
0 0 0 -1

Dy = 1 o o ol°- (2.1.81)
0 -1 0 0
0 1 0 0
1 0 0 0

Dy = 0o 0 0 -1 |- (2.1.82)
0 0 -1 0
-1 0 0 0
0 1 0 0

Dy, = 0o o0 -1 ol (2.1.83)
0 0 0 1
0 0 0 1
0 0 1 0

D,; = o 1 0 ol (2.1.84)
1 0 0 0

[
—_



0 0 1 0
0 0 0 1

Dy = L o0 o ol (2.1.85)
0 1 0 0
0 0 0 -1
0 0 1 0

D3 = o 1 0 ol (2.1.86)
-1 0 0 0
-1 0 0 0
0 -1 0 0

D;; = o o0 1 0 (2.1.87)
0 0 0 1

(2.1.88)

The matrices {£1, £By, £F), +Dj;} form a group under multiplication with 32 elements,
in which the algebraic properties of B; and By and the definition (2.1.77) of Dj;, imply

DB, = Fy, (2.1.89)
DB, = — i €jtm Dmik for | # 7, (2.1.90)
Dy Fr = El, (2.1.91)
D F, = — 23: €kim Djm for | # k, (2.1.92)
D, D; = Tzl (2.1.93)
D;;D;, = - i €itm Fm for | # 7, (2.1.94)
m3:1
DDy, = 3 €tmBum . for k #£ i, (2.1.95)
m:31
DDy = — Z €ikm €jin Dmn for k #14, | # j. (2.1.96)
m,n=1

I am not aware of any prior work in kinematics where this group has been recorded.

2.2 Euler Angles

There are 12 distinct Euler angle sequences. Here we will consider only the sequence gen-
erated by a rotation about the 3-axis through an angle ¢, followed by a rotation about the
resulting 2-axis through an angle 6, followed by a rotation about the resulting 3-axis through
an angle 1. The Euler angle sequence will be denoted by ¢ = (¢, 0,)T, where the super-
script 1" denotes the transpose. This representation the singularity is avoided so long as the
angle @ is near 7/2.
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For our choice of coordinates,

chclcp — ssp  cpclsp + scp —csh
A=e¢;®d; = ( —sclcp — cpsp  —sclhsp + cecp  sysh ) ,

sfco s0so cl

(2.2.1)

where ¢ denotes the cosine and s denotes the sine. The three rows of A specify the coordinates
in the reference frame of d;, ds, and dj, respectively. Note that d3 is independent of the
angle 1.

Following the same procedure used in the previous section, the body components of
angular velocity can be related to the Euler angles as

wj=bd]-¢, (2.2.2)
where
b'(¢) = (—cysh, sy, 0)', (2:2.3)
bi(@) = ( sush, cp, 0) (2.2.4)
b)) = (0, 0, 1) . (2.2.5)

Equation (2.2.2) is commonly written in the form

w = B¢| ¢, (2.2.6)
where

. —cypsh sy 0

B¢l =¢,0b'(¢)=| ss® cyp 0 |. (2.2.7)
ct 0 1

Using the bases {d;} and {b*[¢]}, we can express the derivative of each vector d; as
ad,\"
D,[¢] = (a—‘;> = xB;a®d; . (2.2.8)

In analogy with equation (2.1.29), we observe the identity
Dk[¢]dk(¢) =0 (HO sum). (229)

which follows from the fact that d; is a unit vector.

Assuming sin @ # 0, the vectors {b’(¢)} define a basis for R3. However this basis is not
orthonormal in general, so it is convenient to also define its dual basis {b,(¢)} which satisfies
the identity

b’ - by = &y (2.2.10)
The vectors {b;(¢)} are therefore the columns of the inverse of B[¢], so that
B(g] ' =b;(g)®e; = ( bi(4) ba(¢) bs(¢) ) (2.2.11)
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and

—cp/sb s1/s0 0
bi(¢) = st , by(¢) = et , by(p)=1|0|. (2212
cpel [ s —scl/s0 1

The identity (2.2.10) together with the forms of the matrices D;[¢] imply
Dy [¢] bi(4) =0 (no sum) . (2.2.13)

We infer from equation (2.2.8) that, for small ¢, a change in ¢ along the direction eby (@)
produces a rotation about the axis dj(¢) through an angle e. For example, D:[@]” ¢b;(¢) = 0
while D2[¢]T €b1(¢) = 6d3(¢) and D3[¢]T €b1 (¢) = —Edg (¢)

Using equation (2.2.6) we can express the angular momentum with respect the reference
frame as

w=TF[¢]¢ (2.2.14)
where
0 —s¢ sbco
Fl¢|= AT[@B[g]=| 0 co sbsp |. (2.2.15)
1 0 ct

3 Rodrigues’ Composition of Rotations Formula

In this section we present a derivation of Rodrigues’ formula of the composition of two
rotations. This formula leads naturally to the definition of the Euler-Rodrigues parameters.
The derivation parallels that of Rodrigues in his 1840 paper.

3.1 One Plane Rotation = Two Reflections

The key observation is the following proposition:
Proposition 1. A plane rotation through an angle ¢ is equivalent to two successive refiec-
tions across lines which are separated by an angle ¢/2.

Figure 1 indicates graphically why Proposition 1 is plausible.

Without loss of generality, we can choose the first line, L, to be the horizontal axis. Let
b; be the unit vector along the positive horizontal axis, and let a be the unit vector at an
angle # from b;. Then a;, the reflection of a across L1, lies at an angle —f from b;. Now let
b, be the unit vector along Lo, lying at an angle ¢/2 from by, and let a; be the reflection of
a; across Lo. Because a; lies at an angle —6 — ¢/2 from by, its reflection a, lies at an angle
0 + ¢/2 from by, or equivalently, at an angle ¢/2+ 0 + ¢/2 = 6 + ¢ from b;. That is, a has
been rotated to a; through an angle ¢.

We now prove Proposition 1 using vector algebra. Let k be the unit vector normal to
the plane of rotation and let b = k x n so that {n, b, k} forms a right-handed orthonormal
basis. The reflection across the plane P orthogonal to n is given by the operator

Rn)=1-2nQ®n. (3.1.1)
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Figure 1.

The vector n’ is given by
n' = ncos(¢/2) + bsin(¢/2). (3.1.2)

Therefore
R(n') = 1-2n'®n’
1 —2cos*(¢/2)n ® n — 2sin(¢/2) cos(¢/2)n® b
—2sin(¢/2) cos(¢/2)b ® n — 25sin*(¢/2)b ® b. (3.1.3)

Using the identities 2 cos?(¢/2) = 1+cos ¢, 2sin*(¢/2) = 1 —cos ¢ and 2sin(¢/2) cos(4/2) =
sin ¢, we then obtain

R(n) = 1—(1+cos¢)n®n —sin(¢)n®b
—sin(¢)b®n — (1 —cos )b ® b. (3.1.4)

After simplification, the composition of the two reflections (3.1.1) and (3.1.4) can be ex-
pressed as

Q=R(@)R(n) = 1-(1—-cosd)(n®n+b®b)—sin(¢)(b®b—-—n®b
= cos(¢)1 + (1 — cosp)k ® k + sin(¢) kx]. (3.1.5)

A comparison of equation (3.1.5) with equation (2.1.2) shows that Q is a rotation about the
axis k through an angle ¢. We will denote this rotation by Q(k, ¢).
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3.2 The Composition of Rotations

We can use Proposition 1 to obtain a simple expression for the composition of two rotations

Qk, ¢) = Q(ks, ¢2)Q(k1, ¢1). (3.2.6)

Figure 2 illlustrates the process.

Figure2.

The calculation is trivial if k; and k, are collinear, so assume k; x ky # 0 and define the

unit vector
b = (k1 X kg) /|k1 X k2‘ (327)

which lies in the planes orthogonal to both k; and k,. Let us also define the unit vectors

a = becos(3¢1) — (ki X b)sin(5¢1), (3.2.8)
c = bcos(342) + (ko X b)sin(5¢s). (3.2.9)

We can use Proposition 1 to observe that
Q(ky, ¢1) = R(b)R(a) (3.2.10)

and
Q(ks, ¢2) = R(c)R(b). (3.2.11)
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Because the composition of the reflection R(c) with itself is the identity, equations (3.2.6),
(3.2.10) and (3.2.11) together imply

Q(k, ¢) = R(c)R(a). (3.2.12)

We can now apply Proposition 1 again to equation (3.2.12) to conclude that the net angle
of rotation ¢ is twice the angle between a and c, or

cos(3¢) =a-c, (3.2.13)
and the net axis of rotation k is orthogonal to both a and c, so
k=(axc)/laxc| (3.2.14)

Equation (3.2.13) implies that sin(1¢) = |a x c| (note there is no sign ambiguity, because
sin(3¢) > 0), which together with equation (3.2.14) implies

sin(zp)k = a x c. (3.2.15)
Substituting equations (3.2.8) and (3.2.9) into equations (3.2.13) and (3.2.15) we obtain
cos(3¢) = cos(5¢1) cos(3h2) — sin(31) sin(3¢2) (ki x b) - (ko X b) (3.2.16)
and

sin(:¢)k = cos(3¢1)sin(3¢2) b x (ky x b)
—cos(3¢2) sin(3¢1) (ki X b) x b

— Sin(%¢1) sin(%@) (k1 X b) X (kg X b) . (3217)

To simplify equations (3.2.16) and (3.2.17) we use the vector identities
ax(bxc) = b(a-c)—c(a-b) (3.2.18)
(axb)-(cxd) = (a-c)(b-d)—(a-d)(b-c), (3.2.19)

and the definition (3.2.7) of b to obtain

b x (k2 X b) = k2, (3220)
(k1 X b) xb = —kl, (3221)
(k1 X b) X (k2 X b) = k1 . kg (3222)

Finally we can insert the identities (3.2.20) — (3.2.22) into equations (3.2.16) and (3.2.17) to
obtain

cos(%qﬁ) = cos(%¢1) cos(%@) — [sin(%qbl)kl] . [Sin(%¢2)k2] (3.2.23)
and
sin(3)k = cos(3¢1) [sin(%qSQ) k2] + cos(3¢2) [sin(%@) kl]
+ [sin(2¢1) ki | x [sin(3¢2) ko] . (3.2.24)

Equations (3.2.23) and (3.2.24) provided the initial motivation for the definition of the Euler-
Rodrigues parameters, because with them one can compute the composition of two rotations
in a very simple manner in terms of the variables cos(3¢;) and sin(5¢;) k;.

17



4 Factorizations of Orthogonal Transformations

In mechanics it is sometimes desirable to represent an orthogonal transformation as a product
of transformations which are in some sense simpler. Perhaps the most famous factorization
of an orthogonal transformation in R? is the Euler angle representation, as a composition
of three elementary rotations. Less well-known is Rodrigues’ representation of a rotation in
R? as a composition of two reflections.

Yet another factorization which is relevant to our discussion is credited to Cayley (ref-
erence to be found), who showed that, for any skew transformation C acting on R", the
so-called Cayley transformation

A=(1+0C)'(1-0) (4.0.1)

is an orthogonal transformation. However, the converse is not true. In fact, an orthogonal
transformation A can be represented in the form (4.0.1) if and only if A does not have —1 as
an eigenvalue. To see this, suppose A is given by equation (4.0.1), and that A has eigenvalue
—1 with eigenvector n. Then if we premultiply (4.0.1) by (1 + C) and postmultiply by n,
we obtain bn = n, a contradiction. Conversely, if A does not have an eigenvalue —1, then
the skew transformation C given by

C=(1+A)'(1-A) (4.0.2)

satisfies equation (4.0.1).
In these notes we are concerned primarily with R3, in which a skew transformation can
be expressed as [cX]| for some vector ¢, so that equation (4.0.1) takes the form

A= (1+[cx]) 1 - [ex)). (4.0.3)

In the trivial case ¢ = 0, equation (4.0.3) yields A = 1. We will therefore restrict our
attention to the case where ¢ # 0. We first note that one can write the inverse of 1 + [cX]

explicitly as
1

T L

Equation (4.0.4) can be obtained formally from the series expansion

(1+ [ex]) (1—[ex]+c®c). (4.0.4)

o

(1+[ex]) "t =D (-1)7 [ex}, (4.0.5)

=0

together with the vector identity (3.2.18) which implies

[c><]2 = c®c— |c1, (4.0.6)
[ex]® = ~le[ex], (40.7)
and in general
x| = (=1)( D2 (C ®c— |c|21) , (4.0.8)
[Cx](anl) — (—1)"|C‘2(n_1) [CX] , (409)
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for n > 1. If we then introduce equation (4.0.4) into equation (4.0.3) and simplify, we find
that A can be expressed as

1= Jof? 2cf? el
A= 1 k®k— k 4.0.1
<1+|c\2> *(mcv Ok =\ T3 ep ) b (4.0-10)

where k is the unit vector

k =c/|c|. (4.0.11)

A comparison with equation (2.1.2) shows that in (4.0.10), k is the axis of rotation and
the angle of rotation in given by
tan(¢/2) = |c|. (4.0.12)

Equation (4.0.12) confirms our previous observation that a rotation A through an angle 7,
which has an eigenvalue —1, cannot be represented in the form (4.0.1). The vector

c = (c1,c,c3) = tan(¢p/2) k (4.0.13)

is called the Gibbs vector, and its components are called the Rodrigues parameters. The
singularity we have just observed is yet another manifestation of the topological theorem
that any three-parameter representation of SO(3) must have a singularity. The Rodrigues
parameters are related to the Euler parameters by

C;j = q]'/(I4. (4014)

Finally, the Cayley transform (4.0.3) is closely related to the factorization (2.1.52), since
we can express the 3-by-4 matrices B[q| and B°|[q] in the partitioned forms

B[q] = (cos(¢/2) 1 + [sin(¢/2) kx] | —sin(¢/2)k), (4.0.15)

Blq] = (cos(¢/2) 1 — [sin(¢p/2) kx] | —sin(¢/2)k). (4.0.16)

Question for further research: It was Jacobi who pointed out to Cayley, I think, that the
parameters Rodrigues obtained in is analysis of rigid body motions were first developed by
Euler. I am told Euler developed his parametrization of orthogonal transformation as a mans
to study Diophantine equations in 4 dimensions, and he did not recognize their geometrical
significance. Where does this work appear?

5 Algebras

This section contains some observations about the algebras arising in dimensions two, three
and four, respectively complex algebra, vector algebra (which forms a Lie algebra), and
quaternion algebra. Most of the remarks regarding complex and vector algebra are made for
comparison and contrast with the quaternions algebra.
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5.1 Dimension 2: Complex Algebra

A complex number can be written in the form q = g7+ g2, where ¢; and g, are real numbers,
and 72 = —1. It follows that the general multiplication rule for complex numbers is given by

ap = (¢1% + ¢2) (P15 + p2) = (g2p1 + @1p2)i + (g2p2 — q1p1) - (5.1.1)

In particular, complex multiplication is commutative.
The product qp can be viewed as a bilinear operation on q and p. We can therefore
express the product as

ap =L(q) ( h ) : (5.1.2)
D2
where
q2 il

L = 5.1.3
w=(_= ) 5.9

The matrix L(q) can be decomposed as
L(g) = @ J + g1, (5.1.4)

where 1 is the 2-by-2 identity matrix, and

3= ( Lo ) (5.1.5)

Because multiplication is commutative, we could also express the product as qp = L(p) q .

If we further identify each complex number ¢;7 + ¢o with a 2-by-2 real matrix of the form
(5.1.3), then the standard matrix product of L(q) with L(p) is isomorphic with the complex
product. That is,

L(qp) = L(q) L(p) - (5.1.6)

5.2 Dimension 3: Vector Algebra

To be completed. We will summarize the vector (cross) and scalar (dot) products for 3-
vectors, and note the well-known inequalities

lax b| < |a] b| (5.2.1)

with equality when a | b,
a-b| < a|[b], (5.2.2)

with equality when a = +b, as well as the equality

lax b|?>+|a-b|* = |a’b]*. (5.2.3)
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5.3 Dimension 4: Quaternion Algebra

The set of quaternions H is defined as a skew field (i.e. an algebra which satisfies all the
properties of a field except the commutativity of multiplication) with elements of the form

a4 = qui + goj + gsk + qul, (5.3.1)
where the ¢, ¢2, g3 and g4 are real numbers, 1 is the identity element, and i, j, k satisfy

i’=jP=kK=ijk=—1. (5.3.2)
The relations (5.3.2) imply the multiplication rules

ij= k, jk= i, ki= j,

ji=-k, kj=-i, ik=-j. (5.3.3)

It follows that the product of two general quaternions has the form
(@11 + g2 + gsk + q41) (Pl + poj + psk + psl) = rii+ roj + 3k + 141, (5.3.4)

where

T o= q4P1 — q3P2 + q2P3 + q1Ps (5.3.5)
ro = qQ3P1 + @aP2 — G1P3 + Q2D (5.3.6)
r3s = —@p1+ q1P2 + q4P3 + Q3P4 , (5.3.7)
Ty = —q1P1 — Q2P2 — q3P3 + qaPs - (5.3.8)

This multiplication has the property that it preserves the modulus of the quaternions:

lap| = [allp], (5.3.9)

where

al =@+ B+ G+ (5.3.10)

Hamilton called equation (5.3.9) the “Law of Moduli”. It was this desired property primar-
ily which suggested to Hamilton the multiplication rule for quaternions which is given by
equations (5.3.4) - (5.3.8). (Cf. [24].)

It is sometimes convenient denote the quaternion by (g, qs) where § = q1i+ qoj + qsk is
the vector part of the quaternion and ¢, is the scalar part. Which decomposition is especially
appropriate when we associate Euler parameters with quaternions. Using this notation the
quaternion product can be rewritten as

(d,q4)(P,Ps) = (4P +P2+d+ 4 X B, Q4P+ — G - P). (5.3.11)

In particular, the product of two purely imaginary quaternions, for which the scalar part is
Zero, is
Historically, this observation led J.W. Gibbs to the modern formulation of vector analysis.

(Cf [3].)
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We can also exploit the bilinear structure of the product gp to express it in the form

b1

ap=L@) | |, (5.3.13)
ps3
y 2

where
44  —Gqs q2 a1
a3 44 —q1 a2
L(q) = 5.3.14
(@) —q2 a1 q4 as ( )
-1 —Qq2 —q3 44
Unlike the cases of complex and vector multiplication, however, we can also express the same
product in a distinctly different form, as

q1

_ q2
ap = R(p) : (5.3.15)

g3

g4

where
Dy b3 —DP2 y4i

—P3 D4 b1 D2
R(p) = 5.3.16
) P2 —p1 D4 b3 ( )
—P1 —P2 D3 D4
The matrices L(q) and R(p) can be decomposed with respect to the bases {B;} and {F,},
as
L(q) = iF1 + @2F2 + gsF5 + qal (5.3.17)

and
R(p) = —p1B1 — p2By — p3Bs + pul . (5.3.18)

Because the basis {F,} arises in the matrix L(q), we are motivated to denote the quaternion
product g p using an alternative notation, as (q, p)s. The product (q, p); therefore describes
a rotation of p, described by the quaternion q, with respect to the fixed frame. This notation
will be used below.

The quaternion multiplication just described provides a second way to express the rota-
tion defined by the quaternion q. Suppose that the application of the rotation A(q) defined
by equation (2.1.6) to the vector ¥ € R? yields vector

W = A(q)¥ (5.3.19)

If we define the quaternions v = (¥,0) and w = (w, 0), then the relation (5.3.19) is equivalent

to _
1_.49vq

~ al?

w=qvq (5.3.20)
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To see that (5.3.20) is equivalent to (5.3.19), we observe that
1 1

—qvq=—R(q) L(q)v. 5.3.21
|q? q? @ L{a) ( )
Moreover,
L@) = ( F(@" a) (5.3.22)
and
_ B
R (q) =< q(;l) ) (5.3.23)
It then follows from equations (5.3.21) and (2.1.52) and the definition of v that
1 1 (A(q) O v\ [ Alq)¥
quq—w< oT 1)<0>—( 0 , (5.3.24)

which was to be proved.
There are various matrix representations of the quaternions. For example, we can identify
each quaternion with a matrix of the form

z W
(o). 5528
where
z = q4+1gs, (5.3.26)

The complex numbers z and w are called the Cayley-Klein parameters [5]. The matrix given
in (5.3.25) can be decomposed as

i (101 + 202 + q303) + q41, (5.3.28)

in which a4, 05,05 are the Pauli spin matrices

o = ( (1) (1) ) , (5.3.29)
o) = ( OZ. _é ) (5.3.30)
" wel )0). .

The set of matrices given by (5.3.25) equipped with the usual matrix algebra is isomorphic
with the quaternion algebra. If we further identify each complex number with a 2-by-2 real
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matrix as in equation (5.1.3), then the quaternions can be represented by the set of 4-by-4
real matrices of the form

g4 qs q2 q1
—qs qs —q q2
—q2 q1 94 —GQ3
—q1 —q2 q3 qa

=qF + @Fy — ¢sF3 4+ q41, (5.3.32)

where the matrices Fj, are given by equations (2.1.67) - (2.1.69). A comparison of equation
(5.3.32) with the definition (5.3.1) of the quaternion g shows that we can identify the matrices
Fi, F; and —F3 respectively with the quaternion basis elements i, j and k. The fact that
—F; rather F; is identified with k can be understood by the fact that the matrices F; satisfy
F,F,; F; = 1, while by definition the elements i, j and k satisfy ijk = —1. An alternative
representation is

qa g —q2 —q3
—q1 qs  —Gqs3 92
92 qs g4 q1
g —42 —q1 qa

=q B+ @By — ¢3Bs + ¢41. (5.3.33)

Unlike the complex product, where p q = q p, and vector product, where pxq = —q X p,
the quaternion product p q is distinctly different the product q p. Much as we have denoted
the standard product by (q,p); = qp, we will now denote the alternative product by
(d,p)s = pq. We use the notation (q, p), because

(a,p)s =Pa=R(q)p (5.3.34)

and equation (5.3.18) shows that R(q) is a linear combination of the basis {B;} with coeffi-
cients q;. The product (q, p), therefore describes a rotation of p, described by the quaternion
q, with respect to the body frame.

Put another way, it is not essential that the quaternion multiplication be required to
satisfy the relation ijk = —1. One can define the product (q, p), by the relations

(Li)p=(,j)s = (k,k)p =—1 (5.3.35)
together with
((1,))e, k)p = +1 . (5.3.36)
It then follows that
(ia j)b - k 3 (ja k)b - i 3 (k, i)b - j 3
Goi=—k, (kip=—i, (i Kp=—j. (5.3.37)

A quaternion product cannot however be defined arbitrarily, if the Law of Moduli is to
be satisfied. Hamilton originally considered a multiplication rule with only two imaginary
elements i and j, with a multiplication rule given by ij = 1, but he could not satisfy the Law
of Moduli with such a product. It would appear then that the multiplication tables (5.3.3)
and (5.3.37) are the only two possibilities for multiplication rules.
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Equations (5.3.32) and (5.3.33) suggest there is a close connection between the algebra
of quaternions and spatial rotations. In particular the group U = (S?,-) of unit quaternions
under multiplication is isomorphic with SU(2) because we can identify each element of U
uniquely with an element of SU(2) by equations (5.3.25) - (5.3.27), and under this mapping
matrix multiplication faithfully represents quaternion multiplication. Moreover the group U
is homomorphic with SO(3), because under the two-to-one mapping of q to A(q) we have

A(gp)=A(a)A(p) - (5.3.38)

5.4 Dimension 8: Cayley Algebra

We have remarked that it was the Law of Moduli (5.3.9) which led Hamilton to his definition
of multiplication law on R*. Shortly afterward Cayley followed the same path to define an
analogous multiplication law on R®, producing the Cayley numbers. We will follow [2] and
denote the Cayley numbers by Cay. The Law of Moduli in this case takes the form

(G+E+E+G+E+6G+E+4)
(p} + P53 + P3 + pi + PE + Pg + P + D3)
=7y 4715+ 715+ 7+ 1+ 18 + 17+ T4, (5.4.1)

where

T1 = gsp1 + q1Ps + q2P3 — q3P2 + q4P5 — G5P4 + 97D — G7Ds,
T2 = GgP2 + Q2P + q3P1 — q1P3 + GaPe — G6P4a + g5P7 — G7Ps,
T3 = qgP3 + q3Ps + q1P2 — GoP1 + qaP7 — q7P4 + G6Ps — G5Ps;
T4 = qgPa + qaPs + Gs5P1 — G1P5 + geP2 — q2P6 + q7P3 — G3P7,
Ts = gPs5 + G5Pg + q1P4 — GaP1 + q7P2 — Q2P7 + 3Ps — G6P3,
T6 = G8Pe + gePs + q1P7 — q7P1 + ¢2P4 — GaP2 + ¢5P3 — G3Ps,
T7 = q8Pr + qrPs + G6P1 — G1P6 + g2P5 — q5P2 + q3Ps — GaPs,
Ts = qsPs — 1P1 — G2P2 — q3P3 — qaPs — 45P5 — G6P6 — q7P7- (5.4.2)

6 Special Properties of Dimensions 1, 2, 4 and 8

In this section we summarize some of the significant topological and algebraic features which
are connected with the one-dimensional real numbers R, the two-dimensional complex num-
bers C, the four-dimensional quaternions H and the eight-dimensional Cayley numbers Cay
(also called octonions).

Two of the important algebraic properties of the quaternions are that multiplication is
associative, is that it is a division algebra. Frobenius (1878) showed that the quaternions,
along with its subalgebras, the real numbers and complex numbers, are essentially the only
finite dimensional algebras with these properties.

Theorem 1 (Frobenius) Every finite-dimensional associative division algebra is isomorphic
with the algebra of the real numbers, the complex numbers or the quaternions.
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(Cf. e.g. [2], [13].)

Frobenius also proved a generalization of this theorem where the requirement that mul-
tiplication be associative is relaxed. An algebra is called alternative if the identities a(bb) =
(ab)b and (bb)a = b(ba) hold. In this case we have the following result:

Theorem 2 (Frobenius) Every alternative division algebra is isomorphic with the algebra of
the real numbers, the complex numbers, the quaternions or the Cayley numbers.

Another significant property which the quaternions share with the real numbers, the
complex numbers and the Cayley numbers is the Law of Moduli (5.3.9). An algebra A is
said to be normed if there exists an inner product (-, -) such that

(ap, ap) = (q,q){(p, P) (6.0.1)

for all q,p € A.
Two related questions arise:
1. Can we classify all normed algebras of finite dimension?
2. For which values of n can we construct bilinear forms r;(q, ..., gn, P1, ..., pn) for j =1
to n such that
@+ A+ )PP+ +D2) =2+ 412 (6.0.2)

The two questions are closely related. One can show that any set of n bilinear forms
r; satisfying (6.0.2) defines a normed algebra. Conversely, given an n-dimensional normed
algebra A one can construct an orthonormal basis iy, ..., i,, and then define the bilinear forms
r;(q, p) = (gp, ij), which necessarily satisfy (6.0.2).

In 1898 Hurwitz proved

Theorem 3 (Hurwitz) Every normed algebra with identity is isomorphic to one of the alge-
bras R, C, H or Cay.

The requirement that the algebra have an identity element is essential in Hurwitz’ theorem.
However, given a normed algebra A over a vector space V one can construct a new normed
algebra over V by defining the product

qOp = A(q) B(p), (6.0.3)

where A and B are orthogonal transformations on 4. One can show (cf. [13], p.132) that
every normed algebra over the vector space V can be constructed in this manner. In partic-
ular, from a normed algebra A of dimension n one can always construct a normed algebra
Ay with identity and having the same dimension n. This fact together with Hurwitz’ The-
orem answers question 1 above. Moreover, by our earlier observation about the connection
between questions 1 and 2 we see that the answer to question is n =1, 2, 4 or 8.

Related to the Law of Moduli is Lagrange’s Theorem [8], which states that any natural
number can be expressed as a sum of four squares (of natural numbers). The proof of
this theorem depends upon the fact that the set of all sums of four squares is closed under
multiplication, which follows from the Law of Moduli for quaternions. To complete the proof
it is necessary to show that every prime can be expressed as a sum of four squares. One can
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see that four squares are necessary in general because (2n)> =0 (mod 4) and (2n+1)? =1
(mod 8), so one cannot construct a number of the form 87+ 7 as a sum of only three squares.
In fact, Legendre and Gauss both showed that sums of three squares generate all numbers
except those of the form 4™(8n 4 7). One can also show that sums of two squares generate
all numbers of the for n?n,, where has ny has no prime factors of the form 4n + 3.

Finally, Milnor and Kervaire showed that there is an important geometric property of
the spheres S"~! € R™ for n = 2, 4 and 8. The Hedgehog Theorem states that for each
even-dimensional sphere S* there is no smooth nonzero vector field. Using a result of Bott,
Milnor and Kervaire were able to show that S* is parallelizable if and only if k =1, 3 or 7.
(S* is parallelizable if there exist k linearly independent vector fields.) When we consider
the circle S! in C, it is easy to see that we can simply select the vector field defined by iz
at each z € S'. Analogously, we can consider S® in H, and then we can define three linearly
independent vector fields iq, jq and kq at each point q € S3. The ability to explicitly write
down an orthonormal basis for the tangent plane is a powerful tool, and is extremely useful
in stability analysis, where perturbations must lie in the tangent plane. One can similarly
generate 7 linearly independent vector fields on S” in Cay by premultiplying by the standard
seven “complex” basis elements.
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